Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18508, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898617

RESUMO

Outcomes of weed biological control projects are highly variable, but a mechanistic understanding of how top-down and bottom-up factors influence the success of weed biological control is often lacking. We grew Rumex obtusifolius, the most prominent native weed in European grasslands, in the presence and absence of competition from the grass Lolium perenne and subjected it to herbivory through targeted inoculation with root-boring Pyropteron spp. To explore whether the interactive effects of competition and inundative biological control were size-dependent, R. obtusifolius was planted covering a large range of plant sizes found in managed grasslands. Overall, competition from the grass sward reduced aboveground biomass and final root mass of R. obtusifolius about 62- and 7.5-fold, respectively, and increased root decay of R. obtusifolius from 14 to 58%. Herbivory alone increased only root decay. However, grass competition significantly enhanced infestation by Pyropteron spp. and, as a consequence, enhanced the impact of herbivory on aboveground biomass and final root mass. The synergistic effect was so strong that R. obtusifolius plants grown from initially smaller roots did no longer develop. Inoculating R. obtusifolius with Pyropteron species in grasslands should be further pursued as a promising inundative biological control strategy in the weed's native range.


Assuntos
Lolium , Rumex , Animais , Poaceae , Herbivoria , Insetos , Plantas
2.
New Phytol ; 240(6): 2265-2275, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37789694

RESUMO

Grasslands recovering from drought have repeatedly been shown to outperform non-drought-stressed grasslands in biomass production. The mechanisms that lead to the unexpectedly high biomass production in grasslands recovering from drought are, however, not understood. To disentangle plant-intrinsic and plant-extrinsic (soil) drought legacy effects on grassland recovery from drought, we designed a factorial field experiment where Lolium perenne plants that were exposed to either a 2-month drought or to well-watered control conditions were transplanted into control and drought-stressed soil and rewetted thereafter. Drought and rewetting (DRW) resulted in negative drought legacy effects of formerly drought-stressed plants (DRWp ) compared with control plants (Ctrp ) when decoupled from soil-mediated DRW effects, with DRWp showing less aboveground productivity (-13%), restricted N nutrition, and higher δ13 C compared with Ctrp . However, plants grown on formerly drought-stressed soil (DRWs ) showed enhanced aboveground productivity (+82%), improved N nutrition, and higher δ13 C values relative to plants grown on control soil (Ctrs ), irrespective of the plants' pretreatment. Our study shows that the higher post-drought productivity of perennial grasslands recovering from drought relative to non-drought-stressed controls is induced by soil-mediated DRW legacy effects which improve plant N nutrition and photosynthetic capacity and that these effects countervail negative plant-intrinsic drought legacy effects.


Assuntos
Pradaria , Solo , Secas , Plantas , Biomassa , Ecossistema
3.
PLoS One ; 18(6): e0286760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267389

RESUMO

Rumex obtusifolius is a problematic weed in temperate grasslands worldwide as it decreases yield and nutritional value of forage. Because the species can recruit from the seed bank, we determined the effect of management and soil properties on the soil seed bank of R. obtusifolius in intensively managed, permanent grasslands in Switzerland (CH), Slovenia (SI), and United Kingdom (UK). Following a paired case-control design, soil cores were taken from the topsoil of grassland with a high density of R. obtusifolius plants (cases) and from nearby parcels with very low R. obtusifolius density (controls). Data on grassland management, soil nutrients, pH, soil texture, and density of R. obtusifolius plants were also collected. Seeds in the soil were germinated under optimal conditions in a glasshouse. The number of germinated seeds of R. obtusifolius in case parcels was 866 ±152 m-2 (CH, mean ±SE), 628 ±183 m-2 (SI), and 752 ±183 m-2 (UK), with no significant difference among countries. Densities in individual case parcels ranged from 0 up to approximately 3000 seeds m-2 (each country). Control parcels had significantly fewer seeds, with a mean of 51 ±18, 75 ±52, and 98 ±52 seeds m-2 in CH, SI, and UK, respectively, and a range between 0 and up to 1000 seeds m-2. Across countries, variables explaining variation in the soil seed bank of R. obtusifolius in case parcels were soil pH (negative relation), silt content (negative), land-use intensity (negative), and aboveground R. obtusifolius plant density (positive). Because a large soil seed bank can sustain grassland infestation with R. obtusifolius, management strategies to control the species should target the reduction in the density of mature plants, prevention of the species' seed production and dispersal, as well as the regulation of the soil pH to a range optimal for forage production.


Assuntos
Pradaria , Rumex , Solo/química , Banco de Sementes , Poaceae , Plantas , Sementes/fisiologia
4.
Glob Chang Biol ; 28(21): 6115-6134, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36069191

RESUMO

The degree to which elevated CO2 concentrations (e[CO2 ]) increase the amount of carbon (C) assimilated by vegetation plays a key role in climate change. However, due to the short-term nature of CO2 enrichment experiments and the lack of reconciliation between different ecological scales, the effect of e[CO2 ] on plant biomass stocks remains a major uncertainty in future climate projections. Here, we review the effect of e[CO2 ] on plant biomass across multiple levels of ecological organization, scaling from physiological responses to changes in population-, community-, ecosystem-, and global-scale dynamics. We find that evidence for a sustained biomass response to e[CO2 ] varies across ecological scales, leading to diverging conclusions about the responses of individuals, populations, communities, and ecosystems. While the distinct focus of every scale reveals new mechanisms driving biomass accumulation under e[CO2 ], none of them provides a full picture of all relevant processes. For example, while physiological evidence suggests a possible long-term basis for increased biomass accumulation under e[CO2 ] through sustained photosynthetic stimulation, population-scale evidence indicates that a possible e[CO2 ]-induced increase in mortality rates might potentially outweigh the effect of increases in plant growth rates on biomass levels. Evidence at the global scale may indicate that e[CO2 ] has contributed to increased biomass cover over recent decades, but due to the difficulty to disentangle the effect of e[CO2 ] from a variety of climatic and land-use-related drivers of plant biomass stocks, it remains unclear whether nutrient limitations or other ecological mechanisms operating at finer scales will dampen the e[CO2 ] effect over time. By exploring these discrepancies, we identify key research gaps in our understanding of the effect of e[CO2 ] on plant biomass and highlight the need to integrate knowledge across scales of ecological organization so that large-scale modeling can represent the finer-scale mechanisms needed to constrain our understanding of future terrestrial C storage.


Assuntos
Dióxido de Carbono , Ecossistema , Biomassa , Carbono , Ciclo do Carbono , Humanos , Plantas
5.
Nat Ecol Evol ; 6(3): 315-323, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027723

RESUMO

Experiments show that elevated atmospheric CO2 (eCO2) often enhances plant photosynthesis and productivity, yet this effect varies substantially and may be climate sensitive. Understanding if, where and how water supply regulates CO2 enhancement is critical for projecting terrestrial responses to increasing atmospheric CO2 and climate change. Here, using data from 14 long-term ecosystem-scale CO2 experiments, we show that the eCO2 enhancement of annual aboveground net primary productivity is sensitive to annual precipitation and that this sensitivity differs between woody and grassland ecosystems. During wetter years, CO2 enhancement increases in woody ecosystems but declines in grass-dominated systems. Consistent with this difference, woody ecosystems can increase leaf area index in wetter years more effectively under eCO2 than can grassland ecosystems. Overall, and across different precipitation regimes, woody systems had markedly stronger CO2 enhancement (24%) than grasslands (13%). We developed an empirical relationship to quantify aboveground net primary productivity enhancement on the basis of changes in leaf area index, providing a new approach for evaluating eCO2 impacts on the productivity of terrestrial ecosystems.


Assuntos
Ecossistema , Pradaria , Dióxido de Carbono , Fotossíntese , Abastecimento de Água
6.
Sci Rep ; 11(1): 3835, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589673

RESUMO

Assessing the overall performance of ecosystems requires a quantitative evaluation of multifunctionality. We investigated plant species diversity effects on individual functions and overall multifunctionality in a grassland experiment with sown monocultures and mixtures comprising four key grass and legume species. Nitrogen fertilisation rates were 50, 150, and 450 kg N ha-1 yr-1 (N50, N150, N450). Ten functions were measured representing forage production, N cycling, and forage quality, all being related to either productivity or environmental footprint. Multifunctionality was analysed by a novel approach using the mean log response ratio across functions. Over three experimental years, mixture effects benefited all forage production and N cycling functions, while sustaining high forage quality. Thus, mixture effects did not provoke any trade-off among the analysed functions. High N fertilisation rates generally diminished mixture benefits. Multifunctionality of four-species mixtures was considerably enhanced, and mixture overall performance was up to 1.9 (N50), 1.8 (N150), and 1.6 times (N450) higher than in averaged monocultures. Multifunctionality of four-species mixtures at N50 was at least as high as in grass monocultures at N450. Sown grass-legume mixtures combining few complementary species at low to moderate N fertilisation sustain high multifunctionality and are a 'ready-to-use' option for the sustainable intensification of agriculture.

7.
Ecol Evol ; 10(16): 8652-8668, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884648

RESUMO

Compared to monocultures, multi-species swards have demonstrated numerous positive diversity effects on aboveground plant performance, such as yield, N concentration, and even legacy effects on a following crop. Whether such diversity effects are seen in the soil microbiome is currently unclear. In a field experiment, we analyzed the effect that three plant species (a grass, forb, and legume), and mixtures of these, had on soil fungal and bacterial community structures, as well as their associated legacy effects under a following crop, the grass Lolium multiflorum. We utilized six sward types, three monocultures (Lolium perenne, Cichorium intybus and Trifolium pratense), two bi-species mixtures, and a mixture of the three species. Soil samples were taken from these swards in March (at the end of a three year conditioning phase) and in June, August, and September after L. multiflorum was established, that is, the legacy samplings. When present, the differing monocultures had a significant effect on various aspects of the fungal community: structure, OTU richness, the relative abundance of the phylum Glomeromycota, and indicator OTUs. The effect on bacterial community structure was not as strong. In the multi-species swards, a blending of individual plant species monoculture effects (identity effect) was seen in (a) fungal and bacterial community structure and (b) fungal OTU richness and the relative abundance of the Glomeromycota. This would indicate that plant species identity, rather than diversity effects (i.e., the interactions among the plant species), was the stronger determinant. During the legacy samplings, structural patterns in the fungal and bacterial communities associated with the previous swards were retained, but the effect faded with time. These results highlight that plant species identity can be a strong driver of soil microbial community structures. They also suggest that their legacy effect on the soil microbiome may play a crucial role in following crop performance.

8.
J Agric Food Chem ; 68(28): 7369-7377, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32574046

RESUMO

Proanthocyanidins (PAs) in forages may be present in either soluble (S-PA) or non-extractable (NE-PA) form. Despite potential benefits of the NE-PA in ruminant nutrition, few studies have analyzed NE-PA in forages. This study examined the impact of a range of conditions on S-PA as well as protein- and fiber-bound PA (the NE-PA fractions) in sainfoin (Onobrychis viciifolia). Thus, five sainfoin accessions in either generative or vegetative stage were subjected to drought for 18 weeks and sampled repeatedly for PA analysis. Drought-stressed plants increased S-PAs on average by 59% across all accessions yet only in the vegetative stage. In contrast, NE-PA concentrations were generally lower (on average 15% of the total PAs) and unaffected by drought. Thus, for sainfoin, the low and stable concentration of NE-PAs across accessions, growth stages, and drought conditions should have a low, predictable impact on the future sainfoin analyses and feeding studies.


Assuntos
Fabaceae/química , Fabaceae/crescimento & desenvolvimento , Extratos Vegetais/análise , Proantocianidinas/análise , Secas , Fabaceae/metabolismo , Extratos Vegetais/metabolismo , Proantocianidinas/metabolismo , Água/análise , Água/metabolismo
9.
J Environ Manage ; 251: 109372, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550606

RESUMO

Grasslands provide multiple Ecosystem Services (ES) such as forage provision, carbon sequestration or habitat provision. Knowledge about the trade-offs between these ES is of great importance for grassland management. Yet, the outcome of different management strategies on ES provision is highly uncertain due to spatial variability. We aim to characterize the provision (level and spatial variability) of grassland ES under various management strategies. To do so, we combine empirical data for multiple ES with spatially explicit census data on land use intensities. We analyzed the variations of five ES (forage provision, climate regulation, pollination, biodiversity conservation and outdoor recreation) using data from biodiversity fieldwork, experimental plots for carbon as well as social network data from Flickr. These data were used to calculate the distribution of modelled individual and multiple ES values from different grassland management types in a Swiss case study region using spatial explicit information for 17,383 grassland parcels. Our results show that (1) management regime and intensity levels play an important role in ES provision but their impact depends on the ES. In general, extensive management, especially in pastures, favors all ES but forage provision, whereas intensive management favors only forage provision and outdoor recreation; (2) ES potential provision varies between parcels under the same management due to the influence of environmental drivers, related to topography and landscape structure; (3) there is a trade-offs between forage provision and other ES at the cantonal level but a synergy between forage provision and biodiversity conservation within the grassland categories, due to the negative impact of elevation on both ES. Information about multiple ES provision is key to support effective agri-environmental measures and information about the spatial variability can prevent uncertain outputs of decision-making processes.


Assuntos
Ecossistema , Pradaria , Agricultura , Biodiversidade , Conservação dos Recursos Naturais
10.
Nat Plants ; 5(2): 167-173, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30737508

RESUMO

Rising atmospheric carbon dioxide concentration should stimulate biomass production directly via biochemical stimulation of carbon assimilation, and indirectly via water savings caused by increased plant water-use efficiency. Because of these water savings, the CO2 fertilization effect (CFE) should be stronger at drier sites, yet large differences among experiments in grassland biomass response to elevated CO2 appear to be unrelated to annual precipitation, preventing useful generalizations. Here, we show that, as predicted, the impact of elevated CO2 on biomass production in 19 globally distributed temperate grassland experiments reduces as mean precipitation in seasons other than spring increases, but that it rises unexpectedly as mean spring precipitation increases. Moreover, because sites with high spring precipitation also tend to have high precipitation at other times, these effects of spring and non-spring precipitation on the CO2 response offset each other, constraining the response of ecosystem productivity to rising CO2. This explains why previous analyses were unable to discern a reliable trend between site dryness and the CFE. Thus, the CFE in temperate grasslands worldwide will be constrained by their natural rainfall seasonality such that the stimulation of biomass by rising CO2 could be substantially less than anticipated.


Assuntos
Dióxido de Carbono , Pradaria , Biomassa , Clima , Estações do Ano
11.
Sci Rep ; 8(1): 15047, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301905

RESUMO

Climate models predict increased frequency and severity of drought events. At an Irish and Swiss site, experimental summer droughts were applied over two successive years to grassland plots sown with one, two or four grassland species with contrasting functional traits. Mean yield and plot-to-plot variance of yield were measured across harvests during drought and after a subsequent post-drought recovery period. At both sites, there was a positive relationship between species richness and yield. Under rainfed control conditions, mean yields of four-species communities were 32% (Wexford, Ireland) and 51% (Zürich, Switzerland) higher than in monocultures. This positive relationship was also evident under drought, despite significant average yield reductions (-27% at Wexford; -21% at Zürich). Four-species communities had lower plot-to-plot variance of yield compared to monoculture or two-species communities under both rainfed and drought conditions, which demonstrates higher yield stability in four-species communities. At the Swiss but not the Irish site, a high degree of species asynchrony could be identified as a mechanism underlying increased temporal stability in four-species communities. These results indicate the high potential of multi-species grasslands as an adaptation strategy against drought events and help achieve sustainable intensification under both unperturbed and perturbed environmental conditions.


Assuntos
Biodiversidade , Secas , Pradaria , Modelos Biológicos , Irlanda , Suíça
12.
Ann Bot ; 122(2): 337-348, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790908

RESUMO

Background and Aims: Grassland-based livestock systems in cool maritime regions are commonly dominated by grass monocultures receiving relatively high levels of fertilizer. The current study investigated whether grass-legume mixtures can improve the productivity, resource efficiency and robustness of yield persistence of cultivated grassland under extreme growing conditions over a period of 5 years. Methods: Monocultures and mixtures of two grasses (Phleum pratense and Festuca pratensis) and two legumes (Trifolium pratense and Trifolium repens), one of which was fast establishing and the other temporally persistent, were sown in a field trial. Relative abundance of the four species in the mixtures was systematically varied at sowing. The plots were maintained under three N levels (20, 70 and 220 kg N ha-1 year-1) and harvested twice a year for five consecutive years. Yields of individual species and interactions between all species present were modelled to estimate the species diversity effects. Key Results: Significant positive diversity effects in all individual years and averaged across the 5 years were observed. Across years, the four-species equi-proportional mixture was 71 % (N20: 20 kg N ha-1 year-1) and 51 % (N70: 70 kg N ha-1 year-1) more productive than the average of monocultures, and the highest yielding mixture was 36 % (N20) and 39 % (N70) more productive than the highest yielding monoculture. Importantly, diversity effects were also evident at low relative abundances of either species group, grasses or legumes in the mixture. Mixtures suppressed weeds significantly better than monocultures consistently during the course of the experiment at all N levels. Conclusions: The results show that even in the less productive agricultural systems in the cool maritime regions grass-legume mixtures can contribute substantially and persistently to a more sustainable agriculture. Positive grass-legume interactions suggest that symbiotic N2 fixation is maintained even under these marginal conditions, provided that adapted species and cultivars are used.


Assuntos
Agricultura/métodos , Biodiversidade , Fabaceae/crescimento & desenvolvimento , Fixação de Nitrogênio , Poaceae/crescimento & desenvolvimento , Biomassa , Festuca/crescimento & desenvolvimento , Pradaria , Nitrogênio , Phleum/crescimento & desenvolvimento , Simbiose , Trifolium/crescimento & desenvolvimento
13.
J Appl Ecol ; 55(2): 852-862, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29540935

RESUMO

Grassland diversity can support sustainable intensification of grassland production through increased yields, reduced inputs and limited weed invasion. We report the effects of diversity on weed suppression from 3 years of a 31-site continental-scale field experiment.At each site, 15 grassland communities comprising four monocultures and 11 four-species mixtures based on a wide range of species' proportions were sown at two densities and managed by cutting. Forage species were selected according to two crossed functional traits, "method of nitrogen acquisition" and "pattern of temporal development".Across sites, years and sown densities, annual weed biomass in mixtures and monocultures was 0.5 and 2.0 t  DM ha-1 (7% and 33% of total biomass respectively). Over 95% of mixtures had weed biomass lower than the average of monocultures, and in two-thirds of cases, lower than in the most suppressive monoculture (transgressive suppression). Suppression was significantly transgressive for 58% of site-years. Transgressive suppression by mixtures was maintained across years, independent of site productivity.Based on models, average weed biomass in mixture over the whole experiment was 52% less (95% confidence interval: 30%-75%) than in the most suppressive monoculture. Transgressive suppression of weed biomass was significant at each year across all mixtures and for each mixture.Weed biomass was consistently low across all mixtures and years and was in some cases significantly but not largely different from that in the equiproportional mixture. The average variability (standard deviation) of annual weed biomass within a site was much lower for mixtures (0.42) than for monocultures (1.77). Synthesis and applications. Weed invasion can be diminished through a combination of forage species selected for complementarity and persistence traits in systems designed to reduce reliance on fertiliser nitrogen. In this study, effects of diversity on weed suppression were consistently strong across mixtures varying widely in species' proportions and over time. The level of weed biomass did not vary greatly across mixtures varying widely in proportions of sown species. These diversity benefits in intensively managed grasslands are relevant for the sustainable intensification of agriculture and, importantly, are achievable through practical farm-scale actions.

14.
J Agric Food Chem ; 64(49): 9307-9316, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960281

RESUMO

Sainfoin (Onobrychis viciifolia Scop.) is a forage legume, which improves animal health and the environmental impact of livestock farming due to its proanthocyanidin content. To identify the impact of drought on acetone/water-extractable proanthocyanidin (PA) concentration and composition in the generative and vegetative stages, a rain exclosure experiment was established. Leaves of 120 plants from 5 different sainfoin accessions were sampled repeatedly and analyzed by UPLC-ESI-MS/MS. The results showed distinct differences in response to drought between vegetative and generative plants. Whereas vegetative plants showed a strong response to drought in growth (-56%) and leaf PA concentration (+46%), generative plants showed no response in growth (-2%) or PA concentration (-9%). The PA composition was stable across environments. The five accessions varied in PA concentrations and composition but showed the same pattern of response to the experimental treatments. These results show that the ontogenetic stage at which drought occurs significantly affects the plant's response.


Assuntos
Fabaceae/química , Fabaceae/crescimento & desenvolvimento , Extratos Vegetais/metabolismo , Proantocianidinas/metabolismo , Secas , Fabaceae/metabolismo , Flores/química , Flores/crescimento & desenvolvimento , Flores/metabolismo , Extratos Vegetais/análise , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proantocianidinas/análise , Água/análise , Água/metabolismo
15.
J Agric Food Chem ; 63(47): 10234-42, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26551032

RESUMO

Proanthocyanidins (PAs) in sainfoin (Onobrychis viciifolia Scop.) are of interest to ameliorate the sustainability of livestock production. However, sainfoin forage yield and PA concentrations, as well as their composition, require optimization. Individual plants of 27 sainfoin accessions from four continents were analyzed with LC-ESI-QqQ-MS/MS for PA concentrations and simple phenolic compounds. Large variability existed in PA concentrations (23.0-47.5 mg g(-1) leaf dry matter (DM)), share of prodelphinidins (79-96%), and mean degree of polymerization (11-14) among, but also within, accessions. PAs were mainly located in leaves (26.8 mg g(-1) DM), whereas stems had less PAs (7.8 mg g(-1) DM). Overall, high-yielding plants had lower PA leaf concentrations (R(2) = 0.16, P < 0.001) and fewer leaves (R(2) = 0.66, P < 0.001). However, the results show that these two trade-offs between yield and bioactive PAs can be overcome.


Assuntos
Fabaceae/química , Extratos Vegetais/química , Proantocianidinas/química , Ração Animal/análise , Animais , Fabaceae/metabolismo , Gado/fisiologia , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Proantocianidinas/metabolismo , Espectrometria de Massas em Tandem
16.
Mov Ecol ; 3: 35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26457186

RESUMO

BACKGROUND: In order to understand the impact of grazing livestock on pasture ecosystems, it is essential to quantify pasture use intensity at a fine spatial scale and the factors influencing its distribution. The observation and analysis of animal activity is greatly facilitated by remote tracking technology and new statistical frameworks allowing for rapid inference on spatially correlated data. We used these advances to study activity patterns of GPS-tracked cows in six summer-grazing areas in the Swiss Alps that differed in environmental conditions as well as livestock management. RESULTS: Recorded GPS positions were assigned to the activities of grazing, resting, and walking, and were discretized on a regular grid. Regression models with spatially structured effects were fitted to the spatial activity patterns using Integrated Nested Laplace Approximation. They indicated that terrain slope, forage quality, and stocking rate were the primary factors determining cow activity in the six study areas. Terrain slope significantly reduced livestock activity in five of the six areas and sparse forage availability significantly reduced grazing in all areas. In three areas, grazing pressure imposed by the pasture rotation was observable in the grazing pattern. Insolation, distance to the shed, and distance to water were less important for cow activity. In addition to the main factors identified across all study areas, we found effects operating only in individual areas, which were partly explained by specific environmental and management characteristics. In study areas with few paddocks, environmental variables exerted a stronger control on livestock activity than in areas with a short stocking period per paddock. CONCLUSIONS: The data demonstrated that a strict pasture rotation with short stocking periods is necessary to influence livestock activity, and hence potential effects on ecosystem processes. Without grazing management, livestock activity is primarily determined by the environment. Such insight is indispensable for studying relationships between grazing animals and ecosystem characteristics, and for developing management strategies to optimize ecosystem services. The analysis also highlighted the need for an appropriate statistical treatment of bio-logging data, since various estimates were biased if spatial autocorrelation was ignored.

17.
Glob Chang Biol ; 21(6): 2424-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25626994

RESUMO

Current challenges to global food security require sustainable intensification of agriculture through initiatives that include more efficient use of nitrogen (N), increased protein self-sufficiency through homegrown crops, and reduced N losses to the environment. Such challenges were addressed in a continental-scale field experiment conducted over 3 years, in which the amount of total nitrogen yield (Ntot ) and the gain of N yield in mixtures as compared to grass monocultures (Ngainmix ) was quantified from four-species grass-legume stands with greatly varying legume proportions. Stands consisted of monocultures and mixtures of two N2 -fixing legumes and two nonfixing grasses. The amount of Ntot of mixtures was significantly greater (P ≤ 0.05) than that of grass monocultures at the majority of evaluated sites in all 3 years. Ntot and thus Ngainmix increased with increasing legume proportion up to one-third of legumes. With higher legume percentages, Ntot and Ngainmix did not continue to increase. Thus, across sites and years, mixtures with one-third proportion of legumes attained ~95% of the maximum Ntot acquired by any stand and had 57% higher Ntot than grass monocultures. Realized legume proportion in stands and the relative N gain in mixture (Ngainmix /Ntot in mixture) were most severely impaired by minimum site temperature (R = 0.70, P = 0.003 for legume proportion; R = 0.64, P = 0.010 for Ngainmix /Ntot in mixture). Nevertheless, the relative N gain in mixture was not correlated to site productivity (P = 0.500), suggesting that, within climatic restrictions, balanced grass-legume mixtures can benefit from comparable relative gains in N yield across largely differing productivity levels. We conclude that the use of grass-legume mixtures can substantially contribute to resource-efficient agricultural grassland systems over a wide range of productivity levels, implying important savings in N fertilizers and thus greenhouse gas emissions and a considerable potential for climate change mitigation.


Assuntos
Fabaceae/metabolismo , Pradaria , Nitrogênio/metabolismo , Poaceae/metabolismo , Clima , Europa (Continente) , Fixação de Nitrogênio , Temperatura
18.
PLoS One ; 9(12): e114522, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25474315

RESUMO

Studies of animal behavior are crucial to understanding animal-ecosystem interactions, but require substantial efforts in visual observation or sensor measurement. We investigated how classifying behavioral states of grazing livestock using global positioning data alone depends on the classification approach, the preselection of training data, and the number and type of movement metrics. Positions of grazing cows were collected at intervals of 20 seconds in six upland areas in Switzerland along with visual observations of animal behavior for comparison. A total of 87 linear and cumulative distance metrics and 15 turning angle metrics across multiple time steps were used to classify position data into the behavioral states of walking, grazing, and resting. Five random forest classification models, a linear discriminant analysis, a support vector machine, and a state-space model were evaluated. The most accurate classification of the observed behavioral states in an independent validation dataset was 83%, obtained using random forest with all available movement metrics. However, the state-specific accuracy was highly unequal (walking: 36%, grazing: 95%, resting: 58%). Random undersampling led to a prediction accuracy of 77%, with more balanced state-specific accuracies (walking: 68%, grazing: 82%, resting: 68%). The other evaluated machine-learning approaches had lower classification accuracies. The state-space model, based on distance to the preceding position and turning angle, produced a relatively low accuracy of 64%, slightly lower than a random forest model with the same predictor variables. Given the successful classification of behavioral states, our study promotes the more frequent use of global positioning data alone for animal behavior studies under the condition that data is collected at high frequency and complemented by context-specific behavioral observations. Machine-learning algorithms, notably random forest, were found very useful for classification and easy to implement. Moreover, the use of measures across multiple time steps is clearly necessary for a satisfactory classification.


Assuntos
Herbivoria , Distribuição Animal , Animais , Bovinos , Árvores de Decisões , Análise Discriminante , Feminino , Modelos Lineares , Máquina de Vetores de Suporte
19.
ScientificWorldJournal ; 2012: 723808, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272180

RESUMO

Senecio aquaticus, regionally a Red List species in Europe, has become increasingly abundant in agricultural grassland of medium to high management intensity in Switzerland, Southern Germany, and Austria in recent years, where it is a threat for animal and human health due to its toxicity. In this study, we investigated the seed ecology of S. aquaticus to help protection of the species in relic populations while improving its control when abundant in managed grassland. Germination percentages of fresh ripe seeds of S. aquaticus were on average 68% in 2008, but only 45% in 2010, indicating yearly variation. Germination was generally fast: ten days after the onset of the tests, often more than 45% of all seeds had germinated. When covered with a soil layer of 5 mm, germination was only 16% compared to 63% in full light. Seeds buried in the soil for one and two years showed a germination of 78%, significantly higher than that of fresh ripe seeds, thus suggesting a stimulating effect of cold-wet stratification on germination and long seed survival in the soil. In grasslands with established populations of S. aquaticus, the number of germinable seeds of the species ranged from 361 to 1875 m⁻² in topsoil (0-10 cm) with an average of 1139 m⁻². The large seed bank and the rapid and high germination of S. aquaticus suggest that allowing seed formation is important for its preservation in relic populations. With respect to agricultural grassland, strategies to control the species should initially target hindering seed production and dispersal.


Assuntos
Germinação , Sementes/fisiologia , Senécio/fisiologia , Ecossistema , Solo , Suíça , Fatores de Tempo
20.
Bioinformatics ; 26(16): 2062-3, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20671149

RESUMO

SUMMARY: ExpressionView is an R package that provides an interactive graphical environment to explore transcription modules identified in gene expression data. A sophisticated ordering algorithm is used to present the modules with the expression in a visually appealing layout that provides an intuitive summary of the results. From this overview, the user can select individual modules and access biologically relevant metadata associated with them. AVAILABILITY: http://www.unil.ch/cbg/ExpressionView. Screenshots, tutorials and sample data sets can be found on the ExpressionView web site.


Assuntos
Perfilação da Expressão Gênica/métodos , Software , Algoritmos , Gráficos por Computador , Expressão Gênica , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...